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Single and multiple topologically driven structural transitions in DNA
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Institut für Theoretische Physik 1, Universita¨t Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
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We derive some exact general results concerning the behavior of topological absorbers~i.e., sequences
undergoing topologically driven structural transitions! in closed circular DNA molecules. Starting from the
formal physical framework that covers all known structural transitions, like those from standard B-DNA to
nonstandard conformers Z-DNA, H-DNA, cruciform-DNA, melt-DNA or others, we develop a reduced state
space description that leads to an analytically simplified ‘‘black box’’ view of absorbers. The latter contains
only a single state variable—the total sequence unwindingu describing the topological state of the absorber.
We show that the statistical mechanics ofu is determined by the~one-dimensional! absorption free energy
function Gabs and find explicit expressions forGabs and for momentŝun& in terms of the standard experi-
mental observable—the absorption functionaª^u&. The reduced state space method is then applied to sys-
tems consisting of several interacting topologically coupled absorbers and a formula predicting their collective
behavior~superposition! in terms of their individual absorptions is derived. Using these results we formulate
and discuss solution methods for two basic types of inverse problems that turn out to be fundamental for future
absorber construction.

PACS number~s!: 87.14.Gg, 87.15.2v, 36.20.Ey
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I. INTRODUCTION

Soon after the discovery of the DNA structure by Wats
and Crick and especially since the beginning 1970s it
creasingly became apparent by theoretical considerations
experimental studies that besides the importance of prim
DNA structure ~the sequence! its secondary and tertiar
structure play a decisive biological role in all basic life pr
cesses.

Among these features two of them have been studied v
extensively: alternative~non-B-DNA! conformations and the
DNA topology @1# for their suspected relevance in replic
tion @2#, recombination@3# and transcription processes@4#. In
the beginning of the 1980s the interplay between DNA
pology and the occurrence of alternative non-B-DNA stru
tures was discovered and studied both experimentally
theoretically ~reviewed in @5,6#!. Several alternative struc
tures like cruciforms@7#, melt DNA @8#, and Z-DNA @9#
have been studied in the context of supercoiled plasmids
these studies it was clearly demonstrated that sequence
dergoing a structural transition from standard B-DNA to
ternative structures consume topological links available
the surrounding plasmid~which manifests as a reduction o
overall supercoiling! and in fact do act liketopological ab-
sorbers~see Fig. 1!. It soon became apparent that the impo
tance of topological absorbers is at least twofold. First th
presence can change the level of supercoiling in the topol
cal domain where they are placed~plasmid, for instance! and
thereby affects strongly the global properties of the topolo
cal domain by local changes in only a single very short s
~Fig. 1!. The second important property of topological a
sorbers is their ability to perform fundamental biologic
regulatory tasks through their alternative conformations
parts of transcriptional or replicational initiation machine
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either directly or by acting as specific binding sites for bin
ing elements like transcriptional activators or for RNA pol
merase.

The theoretical framework@5,7–9# for understanding the
biophysics of topological absorbers can be summarized
follows. The supercoiling free energy of a plasmid of giv
length can be measured in dye intercalation and nicki
closing experiments@10#. From such experiments a simp
law can be extracted: the free energy of a plasmid
total lengthN basepair~BP! containingl additional negative
links ~manifested as supercoils! at temperatureT can be de-
scribed as

Gsup~l!5kRTl2, ~1!

with l the negative topological excess linking number tha

FIG. 1. A typical topologically driven local structural transitio
in a topologically closed negatively supercoiled plasmid. The to
logical absorber~sequence in the dashed box! undergoes a struc
tural transition from the standard B-DNA form to the melted DN
structure and consumesu'2 negative links. Because the number
total negative excess linksl is a topologically conserved quantity
the residual negative excess linking numberl res5l2u must de-
crease during the transition from five to three links. The energ
cally unfavorable local DNA melting is compensated by a reduct
of the supercoiling free energy (Gsup}l res

2 ).
7123 ©2000 The American Physical Society
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7124 PRE 62IGOR KULIĆ
imposed on the plasmid,1 R the molar gas constant, andk
51100/N a length dependent plasmid constant.

A topological absorber placed within a supercoiled pl
mid will itself possess a free energyG(s1 ,s2 , . . . ,sn) that
depends on one or more inner variables (s1 ,s2 , . . . ,sn)PS
that describe the structural state of the absorber in a s
spaceS. The dimensionality of the underlying state spaceS
and the concrete functional form ofG will strongly depend
on the type of the structural transitions the topological
sorber is able to undergo, the base-sequence of the abs
~especially its translational, reflectional, and other symm
tries!, but also on the microscopic accuracy of the underly
theoretical model. This fact is well illustrated by the varie
of models of different complexity for cruciform Z-DNA
melted DNA, or H-DNA forming absorbers that include on
two, or even up ton5O(L) independent state variable
with L being the length of the underlying absorber in ba
pairs. For details we refer to the literature.

Now if we consider a composed system consisting of
absorber interacting with the rest of the plasmid it is poss
to address a probability density to each statesW
ª(s1 ,s2 , . . . ,sn)PS:

Wl~sW !5
1

Q~l!
e2[ ~1/RT)G(sW)1k„l2U(sW)…2] ~2!

Q~l!5E
sWPS

e2[(1/RT)G(sW)1k„l2U(sW)…2]ds1 . . . dsn . ~3!

The norming factor in Eq.~2!, the partition functionQ(l) is
defined by ann-dimensional integration/summation2 over the
whole state spaceS @Eq. ~3!#. The topologicalunwinding U

is a function of the statesW that counts how many negativ
additional topological links are consumed by the absor
being in this state. Due to the famous link conservation l
@1# the total excess linksl are shared among the tw
subsystems—the topological absorber sequence and the
of the supercoiled molecule—but their total sum remains
changed unless one of the DNA strands is broken. For
reason the additional links consumed by the absorber lea
a reduction of the links available in the rest of the plasm
~in the form of supercoils! to l2U(sW); compare Figs. 1–3.

Having the probability densityWl for each statesW we can
in principle compute the mean value of any functionF on the
state space:

^F&~l!5E
sWPS

F~sW !Wl~sW !ds1 . . . dsn . ~4!

1We introducelª2nLk for briefness, withnLk being the
number of excess links in the standard biological terminology.

2Depending on the absorber type and concrete theoretical mo
ing the state space may be either continuous or discrete in ea
the dimensionss1 , . . .sn . Most results in this paper do not sub
stantially depend on this distinction and we formulate them gen
ally in terms of integrals.
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A very important function on the state space is the absor
unwinding functionU itself. It turns out that its mean valu
—the topological absorption function~or simply theabsorp-
tion! a,

a~l!ª^U&~l!

5
1

Q~l!
E

sWPS
U~sW !e2[(1/RT)G(sW)1k„l2U(sW)…2]ds1 . . . dsn ,

~5!

can be easily measured in two-dimensional~2D! gel-
electrophoresis experiments. Though not being the only
perimentally available quantity describing the behavior
absorbers, the absorptiona is the most commonly measure
observable, and it has been obtained for all known abso
types in the past. As we will see later,a is in some way a

el-
of

r-

FIG. 2. The individual absorptions of two typical absorbe
wherea1 corresponds to (GC)7 anda2 to (GC)30 in a plasmid of
4kbp length at T5320 K. Both curves are computed from th
standard zipper model@9# for Z-DNA formation as developed in
@9#. Their sigmoidal, strictly increasing shapes are representative
all single-absorber systems observed so far.

FIG. 3. Two distant topological absorbers compete for the av
able negative excess links in plasmid. The first of them, a me
DNA forming sequence, consumesu1 negative links and the secon
one, a cruciform forming sequence, absorbsu2. The driving force of
the transition is again the reduction ofGsup ~as in the single ab-
sorber case in Fig. 1! which leads to a strongly nonlocal, distanc
independent coupling between the two absorbers.



k
rb

i

we

lly

s

e
nd-

b-

e
t
c-
t
a
l

-
ted

the

n-

ser-

ar-

low

e
ifi t

PRE 62 7125SINGLE AND MULTIPLE TOPOLOGICALLY DRIVEN . . .
very fundamental quantity that allows a simplifying ‘‘blac
box’’ view of the absorber and also determines the abso
er’s interaction with other~topologically coupled! absorbers.

II. STATE SPACE REDUCTION AND THE BLACK BOX
VIEW

Let us suppose we have measured the absorptiona ~as a
function of the negative linking number differencel of the
plasmid! of an arbitrary~possibly unknown! absorber type
that is placed in the context of a topologically closed plasm
for sufficiently many different values ofl. By idealizing we
might assumea to be known on the whole real line.3 What
kind of information about the underlying absorber can
extract froma?

To answer this question we need to simplify analytica
the state space of the underlying absorber. Therefore we
shape the expressions, Eq.~3! and Eq.~5!, for the partition
functionQ and absorptiona by a simple change of variable
(s1 ,s2 . . . ,sn)→(u,s2 , . . . ,sn),

Q~l!5E
2`

`

e2k(l2u)2

3S E
sWPSu

1

U]U~sW !

]s1
U e2(1/RT)G(sW)ds2 . . . dsnD du,

~6!

a~l!5
1

Q~l!
E

2`

`

ue2k(l2u)2

3S E
sWPSu

1

U]U~sW !

]s1
U e2 ~1/RT! G(sW)ds2 . . . dsnD du,

~7!

where the inner integration goes overSuª$sW

PS with U(sW)5u%, i.e., the (n21)-dimensional surface
in the state space with constant absorber unwinding~equal to
u). We may now rewrite Eqs.~6! and~7! in a simpler way by
introducing theabsorption free energy Gabs,

Q~l!5E
2`

`

e2k(l2u)2
e2(1/RT)Gabs(u)du, ~8!

a~l!5
1

Q~l!
E

2`

`

ue2k(l2u)2
e2(1/RT)Gabs(u)du, ~9!

with

3Although present experimental techniques with plasmids al
only rather modest resolutions~stepsizeDl51) and limited ranges
for maximal and minimal values ofl, there seem to be no principl
obstacles to overcoming these limitations in the future by sign
cantly changing the experimental setup.
-

d

re-

Gabs~u!ª2RT

3 lnS E
sWPSu

1

U]U~sW !

]s1
U e2 ~1/RT! G(sW)ds2 . . . dsnD .

~10!

The absorption free energyGabs can be seen as an effectiv
free energy of the absorber being in the topological unwi
ing stateu ~with an undetermined microscopic realization!.
Gabs is received by an integration/summation4 over all states
sW that have the same total unwindingU(sW)5u. u describes a
collective state of all state variablessi that has many inner
microscopic realizations. Nevertheless, the variableu in such
a reduced state space, together withGabs(u), is sufficient for
describing the topological influence of the underlying a
sorber on the rest of the plasmid, as we will see below.

In the following and throughout our whole exposition, w
will take the following simplifying point of view: we are no
primarily interested in the microscopic details of the stru
tural transition~which may well be interesting and importan
in some other context! and consider an absorber as being
‘‘black box’’ that responds to different levels of topologica
stress~reflected in the negative linking differencel) with a
certain topological absorptiona. From this point of view the
absorption free energyGabs becomes a central quantity be
cause it allows us to abstract from the possibly sophistica
microscopic descriptions Eqs.~6! and ~7! to obtain the rela-
tionship betweenl and a, Eqs.~8! and ~9!. Therefore it is
natural to ask the obvious question: If we can measure
absorption functiona for sufficiently many pointsl ~or ide-
ally for all real l), can we compute the absorption free e
ergy Gabs @Eq. ~10!# from Eqs.~8! and ~9!?

To answer this question we need to make several ob
vations. First of all, the topological absorptiona from Eq.
~9! can be expressed more conveniently in terms of the p
tition function Q:

a~l!5
1

2k

]

]l
ln@ekl2

Q~l!#, ~11!

which can be verified by simple computation. From Eq.~11!
we computeQ:

Q~l!5Q~0!expS 2kE
0

l

a~u!du2kl2D , ~12!

with an arbitrary positive constantQ(0). Further we need to
observe from Eq.~8! that Q is a Fourier convolution of two
functions:

Q~l!5@g* f #~l! with

g~u!ªe2(1/RT)Gabs(u), ~13!

-

4In the case of discrete summation the termu]U(sW)/]s1u
„which stems from the functional deteriminan
](s1 ,s2 , . . .sn)/](u,s2 , . . .sn)… has to be dropped out.
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f ~u!ªe2ku2
.

Finally, we factorize the convolution in Eq.~13! by applying
the Fourier transformF and extractGabs from F@g# by ap-
plying its inverseF 21. We obtain at last5:

Gabs~u!52RT lnHF 21Fev2/4kF

3FexpS 2kE
0

l

a~ t !dt2kl2D G~v!G~u!J 2C,

~14!

with

CªRT lnS Q~0!Ak

p D .

From the last equation we see that if the absorption func
a of an arbitrary absorber is given we can determine
absorption free energy functionGabs ~up to an arbitrary ad-
ditive constantC). What cannot in general be deduced sole
from the knowledge ofa is the full free energy function
G(sW) on the complete~nonreduced! state spaceS. This type
of information goes beyond the simple observablea and
must be obtained from additional assumptions on the e
structural transitions the absorber is able to undergo or f
the measurement of further experimental observables tha
beyonda.

Still a is a very useful observable and therefore we w
examine in the next section what type of information ab
the equilibrium statistical mechanics of the underlying a
sorber we can extract from the knowledge ofa only.

III. HIGHER MOMENTS AND CUMULANTS

As we noticed above, the absorptiona of an absorber is
~by definition! the first moment of its topological unwindin
variableu. Here we want to compute the higher momentsMn
of the random variableu in terms of the absorptiona. To do
this we must observe that for the moments,

Mn~l!ª^un&~l!5
1

Q~l!
E

2`

`

une2k(l2u)2
e2(1/RT)Gabs(u)du,

~15!

the following simply provable recursive relation holds:

Mn11~l!5S 1

2k

]

]l
1a~l! D Mn~l! for n>1.

~16!

Using M1ªa we conclude from Eq.~16!

Mn~l!5S 1

2k

]

]l
1a~l! D n21

a~l! for n>1. ~17!

Based on this we can compute the first few moments:

5v is the variable in the Fourier space.
n
s

ct
m
go

l
t
-

M15a,

M25a21
1

2k
a8,

M35a31
3

2k
aa81

1

~2k!2
a9, ~18!

M45a41
3

~2k!2
~a8!21

4

~2k!2
aa9

1
6

2k
a2a81

1

~2k!3
a-.

As we can see, the momentsMn are combinations of deriva
tives of a and their powers. The characteristic plasmid p
rameterk and its powers also enter the expansion.

Although Eq. ~17! allows effective computations o
higher moments, it is interesting to express the momentsMn
in a different way. To do so we consider the probabil
density of the unwinding variableu,

Wl~u!ª
e2[(1/RT)Gabs(u)1k(l2u)2]

Q~l!
~19!

for which we obviously@Eqs.~9! and ~8!# have

a~l!5E
2`

`

uWl~u!du. ~20!

On the other hand, we can substitute Eq.~8! in Eq. ~11! and
rewrite the expression slightly by introducing an addition
~independent! variablet:

a~l!5
1

2k

]

]l
lnF E

2`

`

Wt~u!e2k(l2t)uduG . ~21!

Now, it is interesting to note that the expression Eq.~21! can
be interpreted in terms of the generating functionc t of the
density functionWt , which is generally defined as

c t~v!ª^evu&Wt
5E

2`

`

Wt~u!evudu, ~22!

where ^ &Wt
means the mean in regard to the densityWt .

Using this,a can be rewritten as

a~l!5
1

2k

]

]l
ln c t@2k~l2t !#

5
1

2k

]

]l
Ct@2k~l2t !#, ~23!

whereCtª ln ct is the cumulant generating function ofWt .
The last expression in Eq.~23! allows us to relate the deriva
tives of the absorptiona with the sequence of cumulantsct,n
belonging to the corresponding probability densityWt . After
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integration overl of Eq. ~23! followed by Taylor expansion
of both sides we receive

ct,n5
1

~2k!n21
a (n21)~ t ! for n>1 ~24!
o-
b

ts
with ct,n being thenth cumulant ofWt . Having this we can
use the well-known relationship between the cumulantsct,n

and the momentsMn(t) ~see@17#! to express the moments i
terms of the absorption derivativesa (n)(t):
Mn5det1
a 21 0 0 0 . . .

1

2k
a8 a 21 0 0 �

1

~2k!2
a9

1

2k S 2
1Da8 a 21 0 �

1

~2k!3
a (3)

1

~2k!2 S 3
1Da9

1

2k S 3
2Da8 a 21 �

1

~2k!4
a (4)

1

~2k!3 S 4
1Da (3)

1

~2k!2 S 4
2Da9

1

2k S 4
3Da8 a �

. . . . . . . . . . . . . . . �

2
n

. ~25!

If we want to expressa (n) in terms of the momentsMn a similarly elegant formula holds:

a (n)5~22k!ndet1
M1 1 0 0 0 . . .

M2 M1 1 0 0 �

M3 M2 S 2
1D M1 1 0 �

M4 M3 S 3
1D M2 S 3

2D M1 1 �

M5 M4 S 4
1D M3 S 4

2D M2 S 4
3D M1 �

. . . . . . . . . . . . . . . . . .

2
n11

. ~26!
ns
s
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IV. SOME IMPLICATIONS

There are several implications that follow from the m
ment equations stated above. They concern the transition
havior of absorbers and the shape of their absorptionsa. The
first geometrical implication follows from centered momen
Vn(l)ª^(u2a)n&Wl

, the first of which are

V05V150,

V25
1

2k
a8,

~27!

V35
1

~2k!2
a9,

V45
1

~2k!2
a-1

3

~2k!2
~a8!2.

From the second line we can compute the dispersion
e-

sªAV25A 1

2k
a8. ~28!

Keeping in mind that the plasmid constantk and the vari-
anceV2 are positive quantities we conclude thata must be
an increasing function ofl, that is,

a8~l!.0. ~29!

This is the first universal geometric property of absorptio
of single absorbers.6 It is remarkable that this property wa
observed in all experiments with single absorbers~@7–9#!,
but did not get much theoretical attention in the past.
importance lies in the fact that it can only be violated
systems of two or more coupled absorbers~@14–16#, see Fig.

6In systems consisting of several interacting absorbers this p
erty is sometimes violated~@14,15#, Fig. 4!. The criteria for the
occurrence of such anomalous effects will be discussed in d
elsewhere@18#.
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7128 PRE 62IGOR KULIĆ
4!, and therefore can be used as an indicator for the pres
of other absorbers in the same topological region. More p
cisely: if it happens thata8(l),0 for somel, then we
certainly know that the absorber is not alone in the plasm
and that it interferes with some other hidden or unkno
absorber~s! in the same plasmid. From higher centered m
ments we can derive further geometric restrictions on
shape ofa that can also be used as indicators for hidd
additional absorbers.

Having the lower boundary (50) for a8 we may ask the
opposite question: is there an upper boundary fora8, or
equivalently, can the structural transition of an absorber
arbitrarily ’’sharp’’ ~in terms of the variablel)? We can
easily answer this in the case when the absorber is s
limited. By a state-limitedabsorber we simply mean an a
sorber whose absorption free energyGabs is finite only in a
limited interval and infinite outside this interval, i.e. for i
absorption free energy we assume

Gabs~u!5H ,` for uP~umin ,umax!,

` otherwise.
~30!

For that free energy we have that the probability dens
Wl(u) @Eq. ~19!# vanishes outside the interval (umin ,umax).
In this case, which is much less restrictive than it might se
at the first glance,7 we can perform the following estimation

umin<a~l!<umax, ~31!

which implies

7In fact, several natural absorber types like Z-DNA and crucifo
DNA forming sequences are standardly modeled as state-lim
absorbers.

FIG. 4. Conditional absorptions of the two absorbers from F
2. The anomalous effect of decreasing absorptions (d@1 /dl,0)
occurs exclusively in systems consisting of two or more absorb
This feature can be used to distinguish between single-
multiple-absorber systems.
ce
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e
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e

te
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1

2k
a8~l!

5V2~l!

5

E
umin

umax
@u2a~l!#2e2(1/RT)[Gabs(u)1Gsup(l2u)]du

E
umin

umax
e2(1/RT)[Gabs(u)1Gsup(l2u)]du

<

E
umin

umax
~umax2umin!

2e2(1/RT)[Gabs(u)1Gsup(l2u)]du

E
umin

umax
e2(1/RT)[Gabs(u)1Gsup(l2u)]du

5~umax2umin!
2,

0,a8~l!<2k~umax2umin!
2. ~32!

The meaning of the last estimation can be summarized
follows: the slope of the absorptiona of a state-limited ab-
sorber is limited by the square of the difference of the ma
mal and the minimal unwinding state (umax andumin) and the
plasmid constantk. The two extremal states can be eas
extracted from the shape ofa and are obtained from

umax/min5 lim
l→6`

a~l!.

The plasmid constantk is itself inversely proportional to the
lengthN of the plasmid (k51100/N), so that the estimation
~32! is more restrictive for longer plasmids. This is cons
tent with the common experimental observation that str
tural transitions of absorbers in shorter plasmids are sha
(a8 may be higher! than in longer ones.

V. SUPERPOSITION LAW FOR SEVERAL INTERACTING
ABSORBERS

In previous sections we have considered the case o
single absorber being alone in a topologically closed pl
mid, i.e. there was no interference with other absorbers in
same region. Here we want to discuss the case when tw
more different absorbersA1 ,A2 . . . are topologically
coupled and strongly interact with each other by compet
for available links in the plasmid where they are placed~Fig.
3!. In order to describe this situation we need to forma
distinguish between different types of absorptions. T
single absorber absorptions~i.e., the ‘‘interaction free’’ ab-
sorptions! of different absorbersAi we considered previ-
ously, we will abbreviate witha i and callunconditionalab-
sorptions. Each of them results from the underlyi
absorption free energyGabs,i of the absorberAi in the same
way as we have had in Eq.~9!:

a i~l!5
1

Qi~l!
E

2`

`

uie
2[(1/RT)Gabs,i (ui )1k(l2ui )

2]dui

~33!

Qi~l!5E
2`

`

e2[(1/RT)Gabs,i (ui )1k(l2ui )
2]dui . ~34!d

.

s.
d
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On the other hand, if the absorbersAi interact with each
other, their primordial unconditional absorptionsa i will in-
terfere and we will measure new—conditional absorptions
~Fig. 4!. The conditional absorption of an absorberAk that
interacts with the set of other absorbe
$A1 , . . . ,Ak21 ,Ak11 , . . . ,An% we will from now on abbre-
viate with @k . It can be shown~see Appendix B! that the
conditional absorptions @k can be expressed exclusively
terms of the absorption free energiesGabs,i of the absorbers
a

s

ia

th

rp
-

taking part in the interaction. The inner state variables a
the ‘‘fine structure’’ of each of the absorbers@reflected in

their complete free energiesGi(sW) as introduced in the full
state space description in Eq.~2! and Eq.~3!# turn outnot to
be crucial for their interaction as long asGabs,i is known.
The total unwinding variablesuk ~but not the variety of inner
variables of each absorber! govern the topological interaction
so that the conditional absorptions are written as
tion
ute a

tely,
r

@k~l!5

E
2`

`

. . . E
2`

`

uk exp2F 1

RT (
i 51

n

Gabs,i~ui !1kS l2(
i 51

n

ui D 2Gdu1 . . . dun

Q~l!
, ~35!

Q~l!5E
2`

`

. . . E
2`

`

exp2F 1

RT (
i 51

n

Gabs,i~ui !1kS l2(
i 51

n

ui D 2Gdu1 . . . dun . ~36!

Obviously the conditional absorption @k5^uk& is again the mean value of the unwinding variableuk of the absorberAk as we
have had in the noninteracting absorber case@Eqs.~33!,~34!# but in order to obtain @k ~due to the coupling! it is not sufficient
to know only the free energy function ofAk itself—@k is a collective quantity that results from the complete set of absorp
free energiesGabs,i of all the interacting absorbers in the system. Despite this complication, it is possible to comp
conditional absorption @k from the set of unconditional absorptions$a i% i 51 . . .n by exploiting the relationship Eq.~14! and by
substituting the absorption free energies obtained there~as functionals ofa i) in Eq. ~35! and Eq.~36!. Consequently the
conditional absorptions @k5@k@a1 , . . . ,an# can be viewed as functionals of the set of unconditional ones. Unfortuna
due to the complexity of Eqs.~14!, ~35!, and~36!, this relationship is analytically not very transparent. But if we conside

S@a1 , . . . ,an#~l!ª(
i 51

n

@i~l!

5

E
2`

`

. . . E
2`

` S (
i 51

n

ui D exp2F 1

RT (
i 51

n

Gabs,i~ui !1kS l2(
i 51

n

ui D 2Gdu1 . . . dun

Q~l!
, ~37!
for
the sum of all conditional absorptions in the system, a qu
tity that we will call thesuperpositionof $a i% i 51 . . .n , we
can discover a much simpler analytical relationship. To do
we need to notice that the superpositionS obeys the same
identities as any unconditional absorption does, espec
that Eq.~11! still holds

S@a1 , . . . ,an#~l!5
1

2k

]

]l
ln@ekl2

Q~l!#, ~38!

with Q defined in Eq.~36!. This analogy with Eq.~11! is
surprising only at the first glance, as we may look at
many absorber system consisting of absorbers$A1 . . . An%
as a ‘‘big composed’’ absorber whose unconditional abso
tion is simply S@a1 , . . . ,an#. On the one hand we can ex
tractQ from Eq.~38! as we did in Eq.~12!, and on the other
hand we may writeQ as a convolution ofn11 functions
@similarly to Eq.~13!#:

Q~l!5~ f 1* . . . * f n* g!~l! ~39!

with
n-

o

lly

e

-

f i~u!ªe2 ~1/RT! Gabs,i (u),

g~u!ªe2ku2
.

As in the second section, we can now combine Eqs.~38! and
~39! and apply the Fourier transform to receive

)
i 51

n

F@ f i #5
Q~0!

F@g#
F

3FexpS 2kE
0

l

S@a1 , . . . ,an#~u!du2kl2D G .
~40!

On the other hand, we can perform the same transforms
each absorberAi ~with unconditional absorptiona i) sepa-
rately and get

F@ f i #5
Qi~0!

F@g#
FFexpS 2kE

0

l

a i~u!du2kl2D G . ~41!
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Comparing Eqs.~41! and~40! we see that by introducing a
appropriate transformation we can factorize the superp
tion operatorS in terms of its arguments:

x†S@a1 , . . . ,an#‡5

)
i 51

n

Qi~0!

Q~0! )
i 51

n

x@a i #, ~42!

with the transformationx ~of a functionw) given by

x@w#~v!ªAp

k
exp[~1/4!kv2]

3FFexpS 2kE
0

l

w~u!du2kl2D G~v!. ~43!

The transformationx possesses a well defined inversex21

that can be easily calculated,

x21@c#~l!ª
1

2k

]

]l
$ ln F 21@c~v!e2(1/4k)v2

#~l!%1l.

~44!

If we look at Eq.~44! we observe thatx21 is insensitive to
factors multiplying its argumentc, i.e., x21@const3 c#
[x21@c#. Due to that fact we can rewrite Eq.~42! in terms
of x21 and eliminate the constant@) i 51

n Qi(0)#/Q(0) to re-
ceive the final form of the superposition law:

S@a1 , . . . ,an#5x21F)
i 51

n

x@a i #G . ~45!

From this identity we can directly compute the superposit
of n arbitrary absorbers$Ai% i 51..n from their unconditional
absorptions$a i% i 51..n . Moreover, with Eq.~45! we can solve
some very interesting biologically motivated inverse pro
lems, as we will see in the next section.

VI. INVERSE PROBLEMS OF ABSORBER DESIGN

Absorbers are suspected to act as controlling elemen
many genes either directly as binding regions for com
nents of the transcription machinery or indirectly by~topo-
logically! interfering with the conformational states of su
regions. Changing the properties of absorbers or introduc
new absorbers is therefore a possible method to target
functionality and regulative behavior~ @19#!. There are two
kinds of relevant inverse problems~IPs! that occur in this
context:

IP 1. Suppose that in a DNA region there is a natura
occurring absorberA1 that performs some specific~indirect!
regulative task by responding to different levels of topolo
cal links l with different average unwinding~i.e., uncondi-
tional absorption! a1(l). Now we want to artificially intro-
duce a second absorberA2 ~with some absorptiona2) that
interferes withA1 in such a way that their superpositio
S@a1 ,a2# has a predefined shape and behavior as a func
of l. How can we compute the desireda2 in terms ofa1 and
S@a1 ,a2#?

IP 2. We have the same situation as in IP 1, i.e., we h
a given unconditional absorptiona1 of an absorberA1 and
i-

n

-

in
-

g
ne

-

n

e

we introduce a second absorberA2 with a2, but now we
demand a predefined form for the conditional absorption1
~instead ofS). How do we need to choosea2 in order to
obtain the desired @1?

Using the superposition law Eq.~45! from the previous
section it is easy to solve the first problem IP 1 by applyi
the transformx and its inverse@Eqs.~43!,~44!#:

a25x21Fx†S@a1 ,a2#‡

x@a1#
G. ~46!

Such an absorber with unconditional absorptiona2 always
exists if x†S@a1 ,a2#‡/x@a1# is positive definite.8

The solution of IP 2~given a1 and @1, computea2) is
less straightforward, and needs to be computed from
Fredholm-type integral equation~of the first or second kind!.
To obtain this equation we need to observe that the co
tional absorption @1 can also be rewritten as

@15
f 2* ~a1Q1!

f 2* Q1
, ~47!

with

Q1~l!5Q1~0!expS 2kE
0

l

a1~u!du2kl2D
and

f 2~u!5expS 2
1

RT
Gabs,2~u! D .

We may now rewrite Eq.~47! to receive the Fredholm equa
tion of the first kind,

E
2`

`

K~l,u! f 2~u!du50 ~48!

with

K~l,u!ª@@1~l!2a1~l2u!#Q1~l2u!.

All solutions f 2 of Eq. ~48! that obey the conditionsf 2>0
and*2`

` f 2,` lead toGabs,2 , and by applying Eqs.~9! and
~8! we obtain the desired absorptiona2 that solves our in-
verse problem of type 2 for given @1 anda1.

There is also another equivalent formulation of Eq.~48!
that may be more convenient for iterative solutions of IP 2
can be obtained from Eq.~ 47! by reshaping and applying th
Fourier transform:

~F@ f 2#F@Q1# !* F@@1#5F@a1Q1#F@ f 2#,

which is a Fredholm integral equation of the second kind

E
2`

`

K̃~s,t !x2~ t !dt5x2~s!, ~49!

with

8f is said to be positive definite if there is someg with g>0 and
*2`

` g(x)dx,` so thatf 5F(g) holds.
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K̃~s,t !ª
F@Q1#~ t !•F@@1#~s2t !

F@a1Q1#~s!

and

x2ªF@ f 2#.

Once we compute the solutionx2 of Eq. ~49! we can obtain
a2 simply by applying the transformx21 on x2.

VII. CONCLUSION

We have seen that much of the theory of sequences
dergoing structural transitions in topologically closed DN
molecules~which we named topological absorbers! can be
developed in a natural way from the knowledge of a sim
but fundamental observable—the absorption functiona. We
have shown that every absorber can be brought to a red
form in which its transitional behavior is described by only
single state variable—the total topological sequence unw
ing u and the corresponding free energyGabs, which is
uniquely determined by the absorption functiona @Eq. ~14!#.
Within this reduced state space description we neglect
tailed structural information about the different conform
tional realizations corresponding to an unwindingu. This
kind of view that can be termed with ‘‘black box’’ view
contains of course less information than the full descript
but also its focusing lies elsewhere. If we are only interes
in how a given absorber topologically responds to differ
levels of supercoiling~given byl) and how it thereby topo-
logically affects its surroundings, the black box view mea
an appropriate analytical simplification of the problem.
becomes especially useful in those systems for which
knowledge about the microscopic details of the underly
structural transition is still incomplete; for instance, in t
case of sequences transforming from B-DNA to H-DNA@16#
and other similarly complex absorbers.

Furthermore, we have seen that besidesGabs the absorp-
tion a determines explicitly all relevant statistical features
the random variableu ~topological unwinding of the ab
sorber!, and we have derived explicit formulas for the m
mentsMn and cumulantscn of u that depend ona and drawn
some interesting conclusions about the shape ofa. The most
remarkable conclusion is that]a/]l.0, i.e.,a is a nonde-
creasing function of the total number of additional negat
links l in the topologically closed plasmid. Consequently,
for some absorber we should experimentally obse
]a/]l,0, we may conclude that the considered absorbe
not alone in the plasmid. That means that there must be
additional, possibly unidentified~hidden!, absorber in the
same region that topologically interacts with the first a
sorber.

Further we have treated general systems of topologic
coupled absorbers that have already been examined
number of theoretic and experimental studies in the p
@14,15#. We have observed~see Appendix B! that for under-
standing the topological interaction between absorbers
sufficient to work within the reduced state space model,
the black box view, and provided that we know the abso
tion free energiesGabs,i we can predict the individual as we
n-

e

ed

d-

e-
-

n
d
t

s
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e
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an

-

ly
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st
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.,
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as the collective behavior of an arbitrary number of topolo
cally coupled absorbers.

To distinguish conceptually between the behavior of u
coupled and coupled absorbers we have introduced the
different concepts: the unconditional and conditional abso
tions. In the following we have considered the sum of
conditional absorptions in a topological domain, which w
termed superposition, and we have found an explicit form
@Eq. ~45!# that relates the unconditional absorptio
$a i% i 51 . . .n with their superpositionS@a1 , . . . ,an# by ap-
plying a factorizing transformx @Eq. ~43!#. We have seen
that it is possible to exploit the latter relationship to solve
interesting inverse problem~IP 1! that will naturally arise in
future attempts to experimentally construct absorbers of
sired behavior, i.e., of predefined absorptions. We have
considered a second even more important type of inve
problems, IP 2, and have transformed it to a form in which
can be subjected to standard numerical solution methods
suspect that all relevant inverse problems of future abso
design can be split into a combination of these two ba
inverse problems, IP 1 and IP 2. Keeping in mind the w
established and significant importance of topological abso
ers for basic genetic processes, we conclude that it is of g
interest to know more about the principal physical solubil
of these inverse problems in concrete situations.

The exploration of such questions and their practi
implementation, especially in the context of gene behav
modulation in living systems, remain basic challenges
future research.
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APPENDIX A: AN EXAMPLE FOR STATE SPACE
REDUCTION

In previous sections we have assumed the state spac
be continuous, and for computing the basic quantities likeQ,
a, Mn , and others we applied integration over the who
state space. In is easy to see that the same formulas ap
we are dealing with a discrete state space. In this case
integrals are replaced with sums or optionally the free ene
function is ‘‘discretized’’ by writing it in terms ofd func-
tions being positioned at the discrete points of the st
space. By applying either of these methods the upper for
las can be restated in the same form as in the~more general!
continuous case, with the only exception being that fu
tional determinants of the type, Eq.~10! ~coming from inte-
gral substitutions!, can be omitted.

In some standard absorber models we have the situa
that the state space is mixed, i.e., it is both continuous
discrete for different state variables, and sometimes it h
pens that some states play a special role and have to
treated separately. Nevertheless, even in these more com
cated cases it is possible to compute the absorption free
ergy Gabs, i.e., to perform a state space reduction.

To see how the reduction works in practice we will co
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sider as an example the model for the topologically driv
DNA melting in ~for simplicity! a homopolymeric sequenc
of total lengthL. This absorber is usually modeled@11–13#
by introducing three state variablesn ~the number of melt
base pairs!, r ~the number of runs of melt base pairs!, andt
~the interstrand twist per melt base pair!. Two of the three
variables, namelyn and r, are discrete and the third onet
may assume continuous values in (2`,`). The free energy
of the absorber is in a statesW5(n,r ,t) and the total free
energy of the system absorber plasmid is given by

G~n,r ,t!5H ar1bn1
1

2
nCt2 for n51,2 . . . ,L,

0 otherwise,
~A1!

Gtot~n,r ,t,l!5G~n,r ,t!1RTkFl2S n

uAu
2

nt

2p D G2

,

with k being the plasmid constant andl the negative linking
difference as introduced before,9 a,b and C are energetic
constants andA5210.4 is a structural constant describin
the helical winding in theB state~for details see@13#!. The
partition function is then given by

Q~l!5e2kl2
1 (

n51

L

(
r 51

min(L2n,n) E
2`

`

M ~n,r !

3e2(1/RT)[ar1bn1(nC/2)t2]e2k$l2[(n/uAu)2(n/2p)t] %2
dt,

~A2!

with M (n,r )5L/r ( r 21
n21)( r 21

L2n21) being the number of real
izations of a state withn melt base pairs being inr runs. As
we see from the occurrence ofM (n,r ), this three variable
model must already be the reduced form of a model wit
higher dimensional state space. Indeed, a more detailed
scription within an (L11)-dimensional state spac
(b1 , . . . ,bL ,t) with binary variablesbiP$1,0% ( i th base
pair melt or not! and a continuoust reduces due to the trans
lational symmetry~sequence homopolymeric! to the three
dimensional state space (n,r ,t). To perform a further reduc
tion to only a single variable, the total negative seque
unwinding u, we simply substituten/uAu2nt/2p→u and
exchange the order of summation and integration

Q~l!5e2kl2
1E

2`

`

e2k(l2u)2

3S 2p (
n51

L

(
r 51

min(L2n,n)
M ~n,r !

n

3e2(1/RT)$ar1bn12nCp2[1/uAu2(1/n)u] 2%D du.

~A3!

9Our l has the opposite sign as the equivalent variable~denoted
with a) in @13#.
n

a
e-

e

The first term on the right-hand side~that represents the
weight for the ground state with 0 base pairs melt! can be
brought under the integral by introducing thed function so
that finally the partition function reduces to

Q~l!5E
2`

`

e2k(l2u)2
e2(1/RT)Gabs(u)du ~A4!

with

Gabs~u!52RT lnS d~u!12p (
n51

L

(
r 51

min(L2n,n)
M ~n,r !

n

3e2(1/RT)$ar1bn12nCp2[1/uAu2(1/n)u] 2%D . ~A5!

Thus we have rewritten the partition function Eq.~A2! in
the reduced form by computing its absorption free ene
Gabs as a function of the negative topological unwindingu.
The unusual form ofGabs containing ad function has to be
attributed to the unusual structure of the underlying st
space (n,r ,t) in which there are several realizations of th
state u50—the standard B-DNA~discrete! ground state
~represented byd) and the open-stranded but topologica
relaxed states with an interstrand winding per base pat
52p/uAu that exactly compensates the denaturation unwi
ing and ‘‘topologically simulates’’ B-DNA. As can be see
by direct computation~or a limiting process! the occurrence
of the d function in Eq.~A5! does not affect the validity of
basic identities, Eqs.~11!, ~17!, which are implying Eq.~29!.
The latter in our case is written as

S 1

uAu
]^n&
]l

2
1

2p

]^nt&
]l D.0. ~A6!

In @11# and@13# the mean valuên& for positive and nega-
tive values ofl have been obtained and they show an int
esting behavior. The early study@11# has demonstrated tha
below the melting temperatureTm for l,0 ~positive super-
coiling! ]^n&/]l,0 holds and forl.0 ~negative supercoil-
ing! we have]^n&/]l.0. These two observations, esp
cially that for l,0 seem to contradict the general Eq.~29!.
But looking more closely at Eq.~A6! this seeming contradic
tion quickly resolves, as Eq.~A6! states that negative value
of ]^n&/]l are always compensated by negative values
]^nt&/]l so that a reduction in̂n& ~with increasingl)
never implies a decreasing total absorptiona.

On the other hand, in the later study@13# it was shown
that aboveTm the same absorber behaves inversely with
spect to]^n&/]l for decreasingl,0 ~positive supercoil-
ing!, i.e., we have there]^n&/]l.0. But this ‘‘symmetric’’
behavior of the transitional process below and aboveTm re-
flected in an approximate sign inversion]^n&T,Tm

/]l→
2]^n&T.Tm

/]l is imperfect and cannot hold for thel de-

rivative of the second structural mode^nt& too, as Eq.~A6!
shows.
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APPENDIX B

Here we will show that the conditional absorptions @i in
a system of two or more topologically coupled absorbers
be computed just from the knowledge of the correspond
absorption free energiesGabs,i . The latter are linked to the
unconditional absorptionsa i as given in Eq.~14! so the set
of unconditional absorptionsa i determines the interactio
behavior of the underlying absorbers.

For notational simplicity we restrict ourselves to the ca
of two interacting absorbersA1 andA2, but all our compu-
tations remain valid in the case of several absorbers. Le
suppose that the two absorbersA1 and A2 can assume a
number of different conformational states described by v
torial state variablesrW5(r 1 , . . . ,r l) and sW5(s1 , . . . ,sm)
that run through the state spacesR andS, respectively. Each
conformational state of the two absorbers has the confor
tional free energiesG1(rW) and G2(sW) contained in the ab-
sorbersA1 andA2, respectively. The total free energy of th
two absorber system placed in a topologically closed plas
with plasmid constantk and with negative linking difference
l is then given by

G1~rW !1G2~sW !1kRT$l2@U~rW !1V~sW !#%2, ~B1!

with U andV being the topological unwinding functions o
A1 and A2 respectively. Therefore the partition functionQ
of that composed system is given by

Q~l!5E
rWPR

E
sWPS

e2(1/RT)[G1(rW)1G2(sW)]

3e2k$l2[U(rW)1V(sW)] %2

3dr1 . . . drlds1 . . . dsm . ~B2!

By applying the substitution

~r 1 ,r 2 , . . . ,r l ,s1 ,s2 , . . . ,sm!

→„u5U~rW !,r 2 , . . . r l ,v5V~sW !,s2 , . . . ,sm…, ~B3!
n
g

e

us

-

a-

id

U]~r 1 ,r 2 , . . . ,r l ,s1 ,s2 , . . . ,sm!

]~u1 ,r 2 , . . . r l ,u2 ,s2 , . . . ,sm!
U5 1

U]U

]r 1

]V

]s1
U ,

the upper expression can be transformed to

Q~l!5E
2`

` E
2`

` E
rWPRu

E
sWPSv

1

U]U~rW !

]r 1

]V~sW !

]s1
U

3e2(1/RT)[G1(rW)1G2(sW)]e2k[l2(u1v)] 2

3dr2 . . . drlds2 . . . dsmdu dv

5E
2`

` E
2`

`

e2k[l2(u1v)] 2

3S E
rWPRu

e2(1/RT)G1~rW)

U]U~rW !

]r 1
U dr2 . . . drlD

3S E
sWPSv

e2(1/RT)G2(sW)

U]V~sW !

]s1
U ds2 . . . dsmD du dv

5E
2`

` E
2`

`

e2k[l2(u1v)] 2
e2(1/RT)Gabs,1(u)

3e2(1/RT)Gabs,2(v)du dv, ~B4!

with Ruª$rWPR with U(rW)5u% and Svª$sW

PS with V(sW)5v% being the surfaces of constant u
winding of A1 andA2, respectively. The transition from th
second to the third line is performed simply by applying t
definition of the absorption free energy from Eq.~10!.

By applying exactly the same transformation as abo
@Eq. ~B3!#, we see that the same computation also holds
E
rWPR

E
sWPS

U~rW !e2(1/RT)[G1(rW)1G2(sW)]e2k$l2[U(rW)1V(sW)] %2
dr1 . . . drl ds1 . . . dsm

5 . . . 5E
2`

` E
2`

`

ue2k[l2(u1v] 2
e2(1/RT)Gabs,1(u)e2(1/RT)Gabs,2(v)du dv. ~B5!

From Eqs.~B4! and ~B5! we receive finally the conditional absorption
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@1~l!ª

E
rWPR

E
sWPS

U~rW !e2(1/RT)[G1(rW)1G2(sW)]e2k$l2[U(rW)1V(sW)] %2
dr1 . . . drl ds1 . . . dsm

E
rWPR

E
sWPS

e2(1/RT)[G1(rW)1G2(sW)]e2k$l2[U(rW)1V(sW)] %2
dr1 . . . drl ds1 . . . dsm

5

E
2`

` E
2`

`

ue2k[l2(u1v)] 2
e2(1/RT)Gabs,1(u)e2(1/RT)Gabs,2(v)du dv

E
2`

` E
2`

`

e2k[l2(u1v)] 2
e2(1/RT)Gabs,1(u)e2(1/RT)Gabs,2(v)du dv

. ~B6!

A completely symmetrical expression for @2 holds. In the case of a discrete state space modeling, the same argumen
with the only exception being that the integrations are replaced by summations and the functional determinant in E~B3!
vanishes from expressions that follow. The generalization to then-absorber case@Eqs.~35!,~36!# is also straightforward and
goes in an analogous way.
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