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Single and multiple topologically driven structural transitions in DNA

Igor Kulic*
Institut fir Theoretische Physik 1, UniversitStuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
(Received 14 March 2000; revised manuscript received 3 June) 2000

We derive some exact general results concerning the behavior of topological abgogbersequences
undergoing topologically driven structural transitipris closed circular DNA molecules. Starting from the
formal physical framework that covers all known structural transitions, like those from standard B-DNA to
nonstandard conformers Z-DNA, H-DNA, cruciform-DNA, melt-DNA or others, we develop a reduced state
space description that leads to an analytically simplified “black box” view of absorbers. The latter contains
only a single state variable—the total sequence unwindidgscribing the topological state of the absorber.
We show that the statistical mechanicswfs determined by théone-dimensionalabsorption free energy
function G, and find explicit expressions fdg,,s and for momentgu™) in terms of the standard experi-
mental observable—the absorption functier=(u). The reduced state space method is then applied to sys-
tems consisting of several interacting topologically coupled absorbers and a formula predicting their collective
behavior(superpositionin terms of their individual absorptions is derived. Using these results we formulate
and discuss solution methods for two basic types of inverse problems that turn out to be fundamental for future
absorber construction.

PACS numbds): 87.14.Gg, 87.15:v, 36.20.Ey

[. INTRODUCTION either directly or by acting as specific binding sites for bind-
ing elements like transcriptional activators or for RNA poly-

Soon after the discovery of the DNA structure by Watsonmerase.
and Crick and especially since the beginning 1970s it in- The theoretical framewors,7—9 for understanding the
creasingly became apparent by theoretical considerations af#ephysics of topological absorbers can be summarized as
experimental studies that besides the importance of primarfpllows. The supercoiling free energy of a plasmid of given
DNA structure (the sequendeits secondary and tertiary length can be measured in dye intercalation and nicking-
structure play a decisive biological role in all basic life pro- closing experiment§10]. From such experiments a simple
cesses. law can be extracted: the free energy of a plasmid of

Among these features two of them have been studied veriptal lengthN basepaifBP) containing\ additional negative
extensively: alternativénon-B-DNA) conformations and the links (manifested as supercoilat temperaturd can be de-
DNA topology [1] for their suspected relevance in replica- Scribed as
tion [2], recombinatiori3] and transcription processgs. In B
the beginning of the 1980s the interplay between DNA to- GSUP()‘)_KRT}‘Z’ (@)
pology and the occurrence of alternative non-B-DNA strucyith ) the negative topological excess linking number that is
tures was discovered and studied both experimentally and
theoretically (reviewed in[5,6]). Several alternative struc- A=
tures like cruciforms[7], melt DNA [8], and Z-DNA [9] _
have been studied in the context of supercoiled plasmids. In mmi u=0
these studies it was clearly demonstrated that sequences un- -
dergoing a structural transition from standard B-DNA to al-
ternative structures consume topological links available in A=5
the surrounding plasmi@vhich manifests as a reduction of
overall supercoilingand in fact do act likdopological ab-
sorbers(see Fig. L It soon became apparent that the impor- {:M ua2
tance of topological absorbers is at least twofold. First their
presence can change the level of supercoiling in the topologi-
cal domain where they are placgdasmid, for instanceand

. . FIG. 1. A typical topologically driven local structural transition
thereby affects strongly the global properties of the tOpOIOqu|n a topologically closed negatively supercoiled plasmid. The topo-

Ca_l domain by local Changes in only a single very S_hort Sltqogical absorber(sequence in the dashed Bamndergoes a struc-
(Fig. 1). The second important property of topological ab-) transition from the standard B-DNA form to the melted DNA
sorbers is their ability to perform fundamental biological syrycture and consumes-2 negative links. Because the number of
regulatory tasks through their alternative conformations asgptal negative excess links is a topologically conserved quantity,
parts of transcriptional or replicational initiation machinery the residual negative excess linking numbggs=\ —u must de-
crease during the transition from five to three links. The energeti-
cally unfavorable local DNA melting is compensated by a reduction
*Email address: igor@theo.physik.uni-stuttgart.de of the supercoiling free energﬁgupoc)\fes).
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imposed on the plasmidR the molar gas constant, and 12 ' - ' - '
=1100N a length dependent plasmid constant.

A topological absorber placed within a supercoiled plas-
mid will itself possess a free enerd@¥(s;,s,, . . .,S,) that
depends on one or more inner variablsg,é,, ... .s,) S
that describe the structural state of the absorber in a stat
spaceS. The dimensionality of the underlying state sp&e
and the concrete functional form & will strongly depend
on the type of the structural transitions the topological ab-
sorber is able to undergo, the base-sequence of the absorb
(especially its translational, reflectional, and other symme-
tries), but also on the microscopic accuracy of the underlying 2
theoretical model. This fact is well illustrated by the variety
of models of different complexity for cruciform Z-DNA, o} L - =
melted DNA, or H-DNA forming absorbers that include one, )\ (units of link)
two, or even up ton=0(L) independent state variables,
with L being the length of the underlying absorber in base FIG. 2. The individual absorptions of two .typical ab_sorbers
pairs. For details we refer to the literature. where a, corresponds to (GG)and a, to (GC)yq in a plasmid of

Now if we consider a composed system consisting of arftkbp length atT=320 K. Both curves are computed from the

absorber interacting with the rest of the plasmid it is possibletandard zipper mod¢P] for Z-DNA formation as developed in
. . > 9]. Their sigmoidal, strictly increasing shapes are representative for
to address a probability density to each stage all single-absorber systems observed so far.

=
T

1N (units of link)

absorptio

12(51,82, - ,Sn) ES:
A very important function on the state space is the absorber
. 1 ) - unwinding functionU itself. It turns out that its mean value
W, (s)= We’[(“RUG(S)”(“U(S)) ] (2) —thetopological absorption functiofor simply theabsorp-
tion) «,

. . a(N)=(U)(\)
Q(x)=JQ e [WRDNG(S) +x( U gg . ds,. (3)

seS

1 > . 32

= ~[(URTG(s) + k(A= U(s))7]

o) gesU(s)e ds; ...ds,,
The norming factor in Eq(2), the partition functiorQ(\) is (5)
defined by am-dimensional integration/summatfoaver the
whole state spac8[Eg. (3)]. The topologicaunwinding U can be easily measured in two-dimension@D) gel-
is a function of the statg that counts how many negative €l€Ctrophoresis experiments. Though not being the only ex-
additional topological links are consumed by the absorbePerimentally available quantity describing the behavior of
being in this state. Due to the famous link conservation lawAPSorbers, the absorptianis the most commonly measured
[1] the total excess links\ are shared among the two ©bservable, and it has been obtained for all known absorber
subsystems—the topological absorber sequence and the régp€s in the past. As we will see later,is in some way a
of the supercoiled molecule—but their total sum remains un-

changed unless one of the DNA strands is broken. For that 11‘_2_:_0 Aei=5
reason the additional links consumed by the absorber lead to %%w}u ~o
a reduction of the links available in the rest of the plasmid bl
(in the form of supercoilsto \ — U(§); compare Figs. 1-3.
Having the probability density, for each stats we can L=5

in principle compute the mean value of any functeon the
state space: U2

(FY(\)= f F(S)W,(s)ds; . ..ds,. (4) ux2

seS
A1
We introduce\:=— ALk for briefness, withALk being the FIG. 3. Two distant topological absorbers compete for the avail-

number of excess links in the standard biological terminology.  able negative excess links in plasmid. The first of them, a melted
2Depending on the absorber type and concrete theoretical modeBDNA forming sequence, consumes negative links and the second

ing the state space may be either continuous or discrete in each ohe, a cruciform forming sequence, absarpsThe driving force of

the dimensionss,, . ..s,. Most results in this paper do not sub- the transition is again the reduction Gi,, (as in the single ab-

stantially depend on this distinction and we formulate them genersorber case in Fig.)lwhich leads to a strongly nonlocal, distance

ally in terms of integrals. independent coupling between the two absorbers.
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very fundamental quantity that allows a simplifying “black G, (u):=—RT
box” view of the absorber and also determines the absorb-

er’s interaction with othettopologically coupleglabsorbers. I f 1 o (RT) G(g)dsz . ds,
sesy| JU(S)
Il. STATE SPACE REDUCTION AND THE BLACK BOX s,

VIEW

Let us suppose we have measured the absorptias a (10
function of the negative linking number differenzeof the  The absorption free enerdy,;,s can be seen as an effective
plasmid of an arbitrary(possibly unknowh absorber type free energy of the absorber being in the topological unwind-
that is placed in the context of a topologically closed plasmidng stateu (with an undetermined microscopic realization
for sufficiently many different values of. By idealizing we  G,,is received by an integration/summati@ver all states
might assumex to be known on the whole real liféWhat < hat have the same total unwinditlfs) = u. u describes a
kind of information about the underlying absorber can wegqiective state of all state variablas that has many inner
extract froma? - , o , microscopic realizations. Nevertheless, the variatitesuch

To answer this question we need to simplify analytically ; requced state space, together V@i u), is sufficient for
the state space of the underlying absorber. Therefore we repscribing the topological influence of the underlying ab-
shape the expressions, H§) and Eq.(5), for the partition  gqrher on the rest of the plasmid, as we will see below.
functionQ and absorptionr by a simple change of variables |, the following and throughout our whole exposition, we

(81,82 - sp) = (UsSz, - - - 8n), will take the following simplifying point of view: we are not
primarily interested in the microscopic details of the struc-

Q)= f“ e~ x(\—u)? tural transition(which may well be interesting and important
—o in some other contexiand consider an absorber as being a

“black box” that responds to different levels of topological
f 1 o (IRG(E) ds | du stress(reflected in the negative linking differenag with a
aU(S) S2- -0 ' certain topological absorptio®. From this point of view the
s absorption free energ@,,s becomes a central quantity be-
1 cause it allows us to abstract from the possibly sophisticated
(6) microscopic descriptions Eq&) and(7) to obtain the rela-
tionship between\ and «a, Egs.(8) and(9). Therefore it is
1 (= )2 natural to ask the obvious question: If we can measure the
a(\)= Wf_wue_ <) absorption function for sufficiently many pointsa. (or ide-
ally for all real\), can we compute the absorption free en-
f 1 ergy G,ps [EQ. (10)] from Egs.(8) and(9)?
X

se S,

—e” (RN CGE)gs, . .ds, | du, To answer this question we need to make several obser-
JU(s) vations. First of all, the topological absorptienfrom Eq.

ds, (9) can be expressed more conveniently in terms of the par-
@ tition function Q:

se S,

1 9

kN2
5 ax e QM. (1)

where the inner integration goes overS:={s a(N)=
eS with U(s)=ul, i.e., the o—1)-dimensional surface
in the state space with constant absorber unwin¢iogial to

u). We may now rewrite Eqg6) and(7) in a simpler way by

introducing theabsorption free energy s,

A
” e*K()\*U)ze*(l/RT)Gabs(U)dU, (8) Q()\):Q(O)exi{ ZKJO a(u)dU_K)\z), (12)

which can be verified by simple computation. From Ekfl)
we computeQ:

Q)= f .
with an arbitrary positive consta@(0). Further we need to
1 2 observe from Eq(8) thatQ is a Fourier convolution of two
_ k(A —U)2 45— (LRT)G4p{U)
a(h)= Q()\)Lmue Ve w4y, (9) functions:

with QM) =[g*f](N) with

g(u);:ef(]-/RT)Gabs(u), (13)

SAlthough present experimental techniques with plasmids allow——
only rather modest resolutioristepsizeAN =1) and limited ranges
for maximal and minimal values of, there seem to be no principle  “In the case of discrete summation the te|1ra?U(§)/¢?sl|
obstacles to overcoming these limitations in the future by signifi-(which stems from the functional deteriminant
cantly changing the experimental setup. (S1,S2, .. .Sp)d(u,s,, .. .S,)) has to be dropped out.
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f(u)::e"‘uz.

Finally, we factorize the convolution in E¢L3) by applying
the Fourier transfornf and extraciG,, from F[g] by ap-
plying its inverseF 1. We obtain at last

1 ew2/4KJf

Gapdu)=— RTIn{}'

N
X exr{ZKJ a(t)dt—x)\z)
0

()

(U)} -
(14
with

)

Ci= RTIn(Q(O)

=1Ix
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M1=a,

1
M,=a?+ ﬁa’,

M 3+ 3 "y 1 "
=a°+ —aa o,
3 2k (2k)?

(18

3 4
M,=a*+ (a')?+ aad”
(2K)? (2x)?

6 ) 1
+ —a‘a’'+ a”.
2K (2K)3

As we can see, the momeris, are combinations of deriva-
tives of @ and their powers. The characteristic plasmid pa-

From the last equation we see that if the absorption functiomameterx and its powers also enter the expansion.
a of an arbitrary absorber is given we can determine its Although Eq. (17) allows effective computations of

absorption free energy functid®,,s (up to an arbitrary ad-

higher moments, it is interesting to express the momihts

ditive constantC). What cannot in general be deduced solelyin a different way. To do so we consider the probability

from the knowledge ofa is the full free energy function

G(§) on the completénonreducegistate spac&. This type
of information goes beyond the simple observahleand

must be obtained from additional assumptions on the exact

density of the unwinding variable,

e~ [(WRTGapdu) + k(A —)?]

Q(\)

W, (u):= (19

structural transitions the absorber is able to undergo or from
the measurement of further experimental observables that gy which we obviously[Egs. (9) and (8)] have

beyondea.

Still « is a very useful observable and therefore we will
examine in the next section what type of information about
the equilibrium statistical mechanics of the underlying ab-

sorber we can extract from the knowledgeaobnly.

Ill. HIGHER MOMENTS AND CUMULANTS

As we noticed above, the absorptienof an absorber is
(by definition the first moment of its topological unwinding
variableu. Here we want to compute the higher momevits
of the random variable in terms of the absorptioar. To do
this we must observe that for the moments,

- ule™ K()\—u)ze—(l/RT)Gabs(u)du,

M= 0= 5|

(15

the following simply provable recursive relation holds:

n=1.
(16)

for

Mps1(N)= ’ +a()\))Mn(>\)

[z

Using M;:=«a we conclude from Eq(16)

1 9 n—-1
My(N)= (2 a)\+a(>\)) a(\) for n=1. (17

Based on this we can compute the first few moments:

S is the variable in the Fourier space.

uW, (u)du. (20)

o

On the other hand, we can substitute &).in Eq. (11) and
rewrite the expression slightly by introducing an additional
(independentvariablet:

a()\)=i—ln{j W,(u)e?<t =gy, (21)

Now, it is interesting to note that the expression &) can
be interpreted in terms of the generating functignof the
density functionW,, which is generally defined as

o= | Wweran @2

where (), means the mean in regard to the densiy.
Using this,« can be rewritten as

1
a0 = 5 I Y260 —1)]
= 5o o G2 D], 23

whereC,:=In i; is the cumulant generating function @, .
The last expression in E¢RJ) allows us to relate the deriva-
tives of the absorption with the sequence of cumulants,
belonging to the corresponding probability dendiy. After
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integration ovein of Eq. (23) followed by Taylor expansion with c; , being thenth cumulant ofW,. Having this we can

of both sides we receive use the well-known relationship between the cumulants
1 (n—1) and the momentb1,,(t) (se€[17]) to express the moments in
Ct’n:(zk)n—l a () for n=1 (24 terms of the absorption derivatives™(t):
@ -1 0 0 0
1
Foa @ -1 0 0
K
1 1/2
(2r)2" 5(1 “ : 0
M= def] L 1 /a 13 . (25)
a® —(1)a" = z)a’ a -1 -
(2k)? (2k)? 2K
v oo 1 (4 L 2 (Y LYy
(2x)* (21311 (26)212) 7 2«13

If we want to express(" in terms of the moment® , a similarly elegant formula holds:

M, 1 0 0 0
M, M, 1 0 0
2
Mg My []IM; 1 0
(M= (—2k)"de 3 3 : 26
a=(~20) M, Ms M, M, 1 o
1 2
4
Ms My 1 Mj 2 M, 3 My
n+1
|
IV. SOME IMPLICATIONS 1
There are several implications that follow from the mo- o= \Vz= 2 28)

ment equations stated above. They concern the transition be-
havior of absorbers and the shape of their absorptionthe  Keeping in mind that the plasmid constantand the vari-
first geometrical implication follows from centered momentsanceV, are positive quantities we conclude thatmust be

Via(A)=((u—a)"w,, the first of which are an increasing function of, that is,
Vo=V;=0, a'(N)>0. (29
1 This is the first universal geometric property of absorptions
szﬂa’, of single absorber3lt is remarkable that this property was

observed in all experiments with single absorbgis-9)),
(27) but did not get much theoretical attention in the past. Its
1 importance lies in the fact that it can only be violated in

n

V3=(2K)2 @ systems of two or more coupled absorbgfst—16, see Fig.
1 3
V,= 5 "4 > (a')?. ®In systems consisting of several interacting absorbers this prop-
(2k) (2k) erty is sometimes violated 14,15, Fig. 4. The criteria for the

occurrence of such anomalous effects will be discussed in depth
From the second line we can compute the dispersion elsewherg18].
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12 T T T T T 1 / )\
—_ Za ( )
E 10F
E =V,(\)
E/ T Umax _ B
= [U—a(\)]?e” (WRDIGapdW+Caugh—Wlgy
g sl _ Umin
g tmax__1rIG -
@h e ab(W) +Ggyd\ U)]du
FC% i Umin
Umax
2} f (Upnax— umin)ze_(1/RT)[Gabs(u)+Gsup()‘_u)]d u
Umin
1 L 1 = u
O 10 15 2 F3 ) ES f maxe*(URT)[Gabs(U)*Gsup()\*U)]du
N (units of link) Ui
FIG. 4. Conditional absorptions of the two absorbers from Fig. = (Umax— Umin) %
2. The anomalous effect of decreasing absorpti@®{/d\ <0)
occurs exclusively in systems consisting of two or more absorbers. 0<a'(N)=<2xk(Umax— umin)z, (32
This feature can be used to distinguish between single- and
multiple-absorber systems. The meaning of the last estimation can be summarized as

follows: the slope of the absorptiom of a state-limited ab-
&grber is limited by the square of the difference of the maxi-
mal and the minimal unwinding state {,, andu,,;,) and the
plasmid constank. The two extremal states can be easily
daxtracted from the shape of and are obtained from

4), and therefore can be used as an indicator for the presen

of other absorbers in the same topological region. More pre

cisely: if it happens that’'(\)<0 for some\, then we

certainly know that the absorber is not alone in the plasmi

and that it interferes with some other hidden or unknown u = lim a(\)

absorbe(s) in the same plasmid. From higher centered mo- max/min T '

ments we can derive further geometric restrictions on the

shape ofa that can also be used as indicators for hidderiThe plasmid constant is itself inversely proportional to the

additional absorbers. lengthN of the plasmid &= 1100N), so that the estimation
Having the lower boundary=0) for o’ we may ask the (32) is more restrictive for longer plasmids. This is consis-

opposite question: is there an upper boundary dor or  tent with the common experimental observation that struc-

equivalently, can the structural transition of an absorber beural transitions of absorbers in shorter plasmids are sharper

arbitrarily "sharp” (in terms of the variable\)? We can (a' may be higherthan in longer ones.

easily answer this in the case when the absorber is state

limited. By astate-limitedabsorber we simply mean an ab- v, SUPERPOSITION LAW FOR SEVERAL INTERACTING

sorber whose absorption free enel@y,. is finite only in a ABSORBERS

limited interval and infinite outside this interval, i.e. for its

absorption free energy we assume In previous sections we have considered the case of a

single absorber being alone in a topologically closed plas-

mid, i.e. there was no interference with other absorbers in the

<o for ue (Umin,Unay: same region. Here we want to discuss the case when two or

(300 more different absorbersA;,A,... are topologically
coupled and strongly interact with each other by competing
for available links in the plasmid where they are pla¢eig).

For that free energy we have that the probability density?)- !N order to describe this situation we need to formally
W, (u) [Eq. (19)] vanishes outside the intervall §,Una)- d_lstlngwsh between dn_‘fer_ent types of at_)sorptlons. The
In this case, which is much less restrictive than it might seen$iNdle absorber absorptiorise., the “interaction free” ab-

at the first glancéwe can perform the following estimation: SOrPtions of different absorbers4; we considered previ-
ously, we will abbreviate withy; and callunconditionalab-

sorptions. Each of them results from the underlying
Upnin< @(X\) < Upnay, (30 absorption free energ®,;,s; of the absorber; in the same
way as we have had in E():

G u)= .
abdW=1 otherwise.

which implies a(\) = ﬁr 0 e~ (IR Gang () + kO —u)? g,
i — o0
(33
’In fact, several natural absorber types like Z-DNA and cruciform "
Dtl)\lA tf:)ormlng sequences are standardly modeled as state-limited Q‘()\):f e*[(l/RT)GabSi(ui)JrK(}\—ui)Z]dui. (34)
absorbers. e
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On the other hand, if the absorbers interact with each taking part in the interaction. The inner state variables and
other, their primordial unconditional absorptioagwill in-  the “fine structure” of each of the absorbejeflected in
terfere and we will measure neweenditional absorptions their complete free energi@i(§) as introduced in the full

(Fig. 4). The conditional absorption of an absorbéy that o
interacts  with the set of other absorbers Stt€ space description in E@) and Eq.(3)] turn outnot to

(A1, . A1, A - . Aq we will from now on abbre- be crucial for their interaction as long &,,; is known.
viate with @,. It can be showr(see Appendix Bthat the  The total unwinding variablesy (but not the variety of inner
conditional absorptions @can be expressed exclusively in variables of each absorbegovern the topological interaction
terms of the absorption free energi@g,,s; of the absorbers so that the conditional absorptions are written as

n 2
f, fﬁ Uy eXp— Ri_er Gabsi(Uj)+ & )\—Zl ui> du, ...du,
o o 1 n n 2
Q()\):J,xJ’, exp— R_Z absi(ui)+K )\_IZI ui) }dul...dun. (36)

Obviously the conditional absorption @ (u,) is again the mean value of the unwinding variabjef the absorber, as we

have had in the noninteracting absorber d&s#s.(33),(34)] but in order to obtain @ (due to the couplinyit is not sufficient

to know only the free energy function ofy itself—@, is a collective quantity that results from the complete set of absorption
free energiesG,s; Of all the interacting absorbers in the system. Despite this complication, it is possible to compute a
conditional absorption @from the set of unconditional absorptiofs;};-; ., by exploiting the relationship Eq14) and by
substituting the absorption free energies obtained tk@sefunctionals ofe;) in Eq. (35 and Eq.(36). Consequently the
conditional absorptions @ @[ ¢4, - . . ,a,] can be viewed as functionals of the set of unconditional ones. Unfortunately,
due to the complexity of Eqg14), (35), and(36), this relationship is analytically not very transparent. But if we consider

n

Sag, ... an(N): E

. 1 n n 2
Lw . fm(z u,)exp— RT; Gapsi(Uj) + & )\—;1 ui) du, .. .du,
= ) 3
QN 30
|

the sum of all conditional absorptions in the system, a quan- fi(u):=e~ (/R Gapsi(u),

tity that we will call the superpositionof {«;}i-1 ., we

can discover a much simpler analytical relationship. To do so g(u) =6 w2

we need to notice that the superpositiBrobeys the same
identities as any unconditional absorption does, especiall

that Eq.(11) still holds X\s in the second section, we can now combine E8®). and

(39) and apply the Fourier transform to receive

1 J 2
ai, .. .,an](N)==——In[e"*"Q(\)], 38 n
S @M= g Gy QWL 38 b Q0
i=1 Fdl]
with Q defined in Eq.(36). This analogy with Eq(11) is
surprising only at the first glance, as we may look at the
many absorber system consisting of absorlets. . . A}
as a “big composed” absorber whose unconditional absorp-
tion is simply § @4, . .. ,a,]. On the one hand we can ex-
tractQ from Eqg.(38) as we did in Eq(12), and on the other
hand we may writeQ as a convolution oh+1 functions
[similarly to Eq.(13)]:

QN =(fy* ... xfxg)(N) (39
~ Qi(0) \ L
with f[fi]——f[g]}'[exp( ZKJO a;(u)du— Kk ) .

A
X ex;{ZKJ Faq, ... ,an](u)dU—K)\Z) .
0

(40)

On the other hand, we can perform the same transforms for
each absorber; (with unconditional absorptiomy;) sepa-
rately and get

(41)
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Comparing Eqs(41) and(40) we see that by introducing an we introduce a second absorhdp with a,, but now we
appropriate transformation we can factorize the superpostemand a predefined form for the conditional absorption @

tion operatorSin terms of its arguments:

Il Q0 »

coanll= W Il:[l xlail,

with the transformatiory (of a functione) given by

x[Say, . (42

Mel(w):= \fgexpa Vdkw?]

A
Xf[ex;{ ZKJO e(u)du— K)\2>

The transformatiory possesses a well defined invenge!
that can be easily calculated,

(). (43

1 9
X U0 =5 oI F [ p(w)e PR (0}
(44)

If we look at Eq.(44) we observe thag ! is insensitive to
factors multiplying its argumenty, i.e., x [consi ]

=y ¢]. Due to that fact we can rewrite EG12) in terms
of x~* and eliminate the constafll!_,Q;(0)]/Q(0) to re-
ceive the final form of the superposition law:

coagl=xt i[ll xlail|. (45)

S[alv .

(instead ofS). How do we need to choose, in order to
obtain the desired @

Using the superposition law E@45) from the previous
section it is easy to solve the first problem IP 1 by applying
the transformy and its inverséEgs.(43),(44)]:

x[Say,a]]
xlai] ’

_ 1

(46)

ap

Such an absorber with unconditional absorptienalways
exists if [ ay,a,]) x[ @] is positive definité

The solution of IP 2(given a; and @, computea,) is
less straightforward, and needs to be computed from a
Fredholm-type integral equatidof the first or second kind
To obtain this equation we need to observe that the condi-
tional absorption @ can also be rewritten as

 fo*(@1Qy)
@1_ f2*Q1 ’ (47)
with
A
Q,(\) = Ql(O)exp( zkf oy (U)du— K)\z)
0
and

1
fz(U) = eX[{ - ﬁGabﬂ(u)) .

We may now rewrite Eq(47) to receive the Fredholm equa-

From this identity we can directly compute the superpositiortion of the first kind,

of n arbitrary absorber$.A;};_, , from their unconditional

absorptiong «;}; -1 , - Moreover, with Eq(45) we can solve
some very interesting biologically motivated inverse prob-

lems, as we will see in the next section.

VI. INVERSE PROBLEMS OF ABSORBER DESIGN

Absorbers are suspected to act as controlling elements iﬂ
many genes either directly as binding regions for compo

nents of the transcription machinery or indirectly tigpo-

logically) interfering with the conformational states of suc
regions. Changing the properties of absorbers or introducin&e
new absorbers is therefore a possible method to target ge
functionality and regulative behavi@r[19]). There are two

kinds of relevant inverse problemi#?s) that occur in this
context:

IP 1. Suppose that in a DNA region there is a naturally

occurring absorber!; that performs some specifildirect

ne

foc K(\,u)fy(u)du=0 (48)

with
KN U):=[@1(N) = ay(A=u)]Q1(A—u).

Il solutions f, of Eq. (48) that obey the condition§,=0
and[” f,<o lead toG,ps2, and by applying Eq99) and

h (8) we obtain the desired absorptiary that solves our in-

rse problem of type 2 for given @and «;.

There is also another equivalent formulation of E4)
that may be more convenient for iterative solutions of IP 2. It
can be obtained from E§47) by reshaping and applying the
Fourier transform:

(FITAHAQN* A @1]=H a1Q1]F f5],

regulative task by responding to different levels of topologi-which is a Fredholm integral equation of the second kind:

cal links A with different average unwinding.e., uncondi-
tional absorptioh a4(\). Now we want to artificially intro-
duce a second absorbgl, (with some absorption,) that

interferes with.4; in such a way that their superposition

|” Rstnaat=xa(s), 9

S a4,a5] has a predefined shape and behavior as a functioWith

of . How can we compute the desired in terms ofa, and
Say,a]?

IP 2. We have the same situation as in IP 1, i.e., we have # is said to be positive definite if there is someavith g=0 and

a given unconditional absorptiam; of an absorber4; and

J7..9(x)dx<e so thatf = F(g) holds.
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FQ (1) - A@,](s—1) as the collective behavior of an arbitrary number of topologi-
Fa;041(s) cally coupled absorbers. .

To distinguish conceptually between the behavior of un-
coupled and coupled absorbers we have introduced the two
different concepts: the unconditional and conditional absorp-
tions. In the following we have considered the sum of all

x2:=F1f2]. conditional absorptions in a topological domain, which we
termed superposition, and we have found an explicit formula
Once we compute the solutign, of Eq. (49) we can obtain [Eq. (45)] that relates the unconditional absorptions
a, simply by applying the transforny ™t on .. {a;}i=1 . with their superpositior§ a4, . ..,a,] by ap-
plying a factorizing transformy [Eqg. (43)]. We have seen
that it is possible to exploit the latter relationship to solve an
interesting inverse problertP 1) that will naturally arise in

We have seen that much of the theory of sequences ufuture attempts to experimentally construct absorbers of de-
dergoing structural transitions in topologically closed DNA sired behavior, i.e., of predefined absorptions. We have also
molecules(which we named topological absorbersan be considered a second even more important type of inverse
deve|0ped in a natural way from the know]edge of a Simp|d)r0b|em5, IP 2, and have transformed it to a form in which it
but fundamental observable—the absorption functiowe  can be subjected to standard numerical solution methods. We
have shown that every absorber can be brought to a reduc&fspect that all relevant inverse prob_lems of future absorb_er
form in which its transitional behavior is described by only adesign can be split into a combination of these two basic
single state variable—the total topological sequence unwindnverse problems, IP 1 and IP 2. Keeping in mind the well
ing u and the corresponding free ener@,s, which is establlsheq and S|gn|f|cant|mportance of topologlgal_l absorb-
uniquely determined by the absorption functiefiEq. (14)]. ers for basic genetic processes, we co_nclude that it is of great
Within this reduced state space description we neglect ddnterest to know more about the principal physical solubility
tailed structural information about the different conforma-©f these inverse problems in concrete situations. _
tional realizations corresponding to an unwinding This The exploration of such questions and their practical
kind of view that can be termed with “black box” view implementation, especially in the context of gene behavior
contains of course less information than the full descriptionmodulation in living systems, remain basic challenges for
but also its focusing lies elsewhere. If we are only interesteduture research.
in how a given absorber topologically responds to different
Ievgals of supercgilinggiven py)\) and how it therepy topo- ACKNOWLEDGMENTS
logically affects its surroundings, the black box view means
an appropriate analytical simplification of the problem. It The author would like to thank Professor M. Bestehorn,
becomes especially useful in those systems for which ouProfessor A. Mielke, Dr. C. Kstler, and Dr. |. Kim for sup-
knowledge about the microscopic details of the underlyingoort and discussions and Professor M.L. Kutic a careful
structural transition is still incomplete; for instance, in thereading of the manuscript.
case of sequences transforming from B-DNA to H-DN&)]
and other similarly complex absorbers.

Furthermore, we have seen that besifggs the absorp-
tion « determines explicitly all relevant statistical features of
the random variableu (topological unwinding of the ab- In previous sections we have assumed the state space to
sorbej, and we have derived explicit formulas for the mo- be continuous, and for computing the basic quantitiesQke
mentsM,, and cumulants,, of u that depend o and drawn «, M,, and others we applied integration over the whole
some interesting conclusions about the shape.dfhe most  state space. In is easy to see that the same formulas apply if
remarkable conclusion is that/JdN>0, i.e.,« is @a nonde- we are dealing with a discrete state space. In this case the
creasing function of the total number of additional negativeintegrals are replaced with sums or optionally the free energy
links \ in the topologically closed plasmid. Consequently, if function is “discretized” by writing it in terms ofs func-
for some absorber we should experimentally observeions being positioned at the discrete points of the state
dal IN<0, we may conclude that the considered absorber ispace. By applying either of these methods the upper formu-
not alone in the plasmid. That means that there must be aas can be restated in the same form as in(there general
additional, possibly unidentifieghidden, absorber in the continuous case, with the only exception being that func-
same region that topologically interacts with the first ab-tional determinants of the type, E(LO) (coming from inte-
sorber. gral substitutiong can be omitted.

Further we have treated general systems of topologically In some standard absorber models we have the situation
coupled absorbers that have already been examined in that the state space is mixed, i.e., it is both continuous and
number of theoretic and experimental studies in the pastiscrete for different state variables, and sometimes it hap-
[14,15. We have observetsee Appendix Bthat for under- pens that some states play a special role and have to be
standing the topological interaction between absorbers it ireated separately. Nevertheless, even in these more compli-
sufficient to work within the reduced state space model, i.e.cated cases it is possible to compute the absorption free en-
the black box view, and provided that we know the absorpergy G,;s, i.€., to perform a state space reduction.
tion free energie&,;,s; we can predict the individual as well To see how the reduction works in practice we will con-

R(S,t) =

and

VII. CONCLUSION

APPENDIX A: AN EXAMPLE FOR STATE SPACE
REDUCTION
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sider as an example the model for the topologically driveriThe first term on the right-hand sidghat represents the
DNA melting in (for simplicity) a homopolymeric sequence weight for the ground state with 0 base pairs mekln be
of total lengthL. This absorber is usually model¢til-13  brought under the integral by introducing tidefunction so
by introducing three state variables(the number of melt that finally the partition function reduces to

base pairg r (the number of runs of melt base pajrandr

(the interstrand twist per melt base paifwo of the three .

variables, namelyr andr, are discrete and the third ore Q(}‘):J e~ k(N =u2g~ (AR Gpdu) gy, (A4)
may assume continuous values in¢,«). The free energy —o0

of the absorber is in a sta’é=(n,r,r) and the total free

energy of the system absorber plasmid is given by with

1
ar+bn+=nC7 for n=12...L,
G(n,r,7)= 2

0 otherwise,

L min(L—n,n) M (n r)
Gabs(u)=—RTIn( sw+2rY, >, n’
n=1 r=1

(A1)

5 w @~ (URT){ar+bn+2nCa?[1/|A|~ (1m)u]?} | (A5)

N n nr

[l 2w
with « being the plasmid constant akdthe negative linking
difference as introduced befotea,b and C are energetic
constants and\=—10.4 is a structural constant describing T

the helical winding in theB state(for details se¢13]). The
partition function is then given by

Giot(n,r,7,A)=G(n,r,7) +RTk

Thus we have rewritten the partition function E42) in
the reduced form by computing its absorption free energy
G.ps as a function of the negative topological unwindimng
he unusual form of5,,5 containing ad function has to be
attributed to the unusual structure of the underlying state
space 0,r,7) in which there are several realizations of the

L min(L—n,n) state u=0—the standard B-DNA(discret¢ ground state
N =e N4 nr (represented by) and the open-stranded but topologically
QM= z E — M(n.n) relaxed states with an interstrand winding per base pair

=2m/|A| that exactly compensates the denaturation unwind-
ing and “topologically simulates” B-DNA. As can be seen
(A2) by direct computatiorfor a limiting procesgthe occurrence
of the 6 function in Eq.(A5) does not affect the validity of
with M(n,r)=L/r("1(-"11) being the number of real- basic ident'ities, qu{ll}, (17}, which are implying Eq(29).
izations of a state witim melt base pairs being inruns. As 1€ latter inour case is written as
we see from the occurrence df(n,r), this three variable
model must already be the reduced form of a model with a 1 &(n) 1 (n7)
higher dimensional state space. Indeed, a more detailed de- W N 2m oN >0. (AB)
scription within an [ +1)-dimensional state space
(by, ... b ,7) with binary variablesb;e{1,0; (ith base
pair melt or not and a continuous reduces due to the trans-  In [11] and[13] the mean valuén) for positive and nega-
lational symmetry(sequence homopolymeyid¢o the three tive values ofA have been obtained and they show an inter-
dimensional state spaca,(, 7). To perform a further reduc- esting behavior. The early stud¢1] has demonstrated that
tion to only a single variable, the total negative sequencdelow the melting temperatufg,, for A<O (positive super-
unwinding u, we simply substituten/|A|—n7/27—u and  coiling) &(n)/dx<0 holds and foi >0 (negative supercoil-
exchange the order of summation and integration ing) we haved(n)/dn>0. These two observations, espe-
cially that forA<0 seem to contradict the general ER9).
N (- 0)? But looking more closely at EqA6) this seeming contradic-
QM) =e + . tion quickly resolves, as EqA6) states that negative values
of d(n)/d\ are always compensated by negative values of
M(n,r) a(nty/dN so that a reduction i{n) (with increasing\)
never implies a decreasing total absorptien
On the other hand, in the later stuf{3] it was shown
that aboverT,,, the same absorber behaves inversely with re-
spect tod(n)/ox for decreasingh <O (positive supercoil-
ing), i.e., we have theré(n)/Jx>0. But this “symmetric”
(A3)  behavior of the transitional process below and abbyee-
flected in an approximate sign inversiaizjn)T<Tm/a)\—>

—d(n)7~1_/J\ is imperfect and cannot hold for the de-

%0ur A has the opposite sign as the equivalent varigbnoted  rivative of the second structural moger) too, as Eq(A6)
with «) in [13]. shows.

e~ (URM[ar+ bn+(nC/2)72]e— K{x—[(n/|A|)—(n/2w)T]}2d -

L min(L—n,n)

X 2772 E
n=1 r=1

n

x @~ (URT{ar+bn+ 2nCr2[1|A] - (1n)u] %} du.
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APPENDIX B i,y ... F,S1,S;, ...,sm)‘ 1
Here we will show that the conditional absorptions @ Uy fa, . T, Up,Sg, o S)|  [JU GV
a system of two or more topologically coupled absorbers can dry ds;

be computed just from the knowledge of the corresponding
absorption free energigS,,4;. The latter are linked to the
unconditional absorptiona; as given in Eq(14) so the set
of unconditional absorptiong; determines the interaction

the upper expression can be transformed to

behavior of the underlying absorbers
For notational simplicity we restrict ourselves to the case Q()\)_J f J f
of two interacting absorberd; and.A,, but all our compu- —»J-=JreRyJses,
tations remain valid in the case of several absorbers. Let us
suppose that the two absorbeds and A, can assume a
number of different conformational states described by vec-
torial state variables =(ry, ...,r,) and s=(s, ... Sy

that run through the state spadeandS respectively. Each
conformational state of the two absorbers has the conforma- Xdr,...drds,...ds,dudv

tional free energiess;(r) and G,(s) contained in the ab-
sorbersA,; and.A,, respectively. The total free energy of this Jx fw

aU(r)aV(Q-
i, Js,

x e~ (IRMIG1(N) +Ga(9)] g =« — (u+v)]?

two absorber system placed in a topologically closed plasmid g - (uro)?

with plasmid constank and with negative linking difference
\ is then given by

. . R R rer, |U(r)
G1(r)+Gy(s)+ kRTIN-[U(r)+V(s)]}2,  (BI) o,

e~ (URNG(1)
X J dr,...dr

with U andV being the topological unwinding functions of
A; and A, respectively. Therefore the partition functiéh

3 ——ds,...ds, | dudv

e~ (VRTGy(s)
<] 5
ses, |dV(S)

of that composed system is given by 9S8,
Q(A)==J}ERJ;ESe—(ﬂRn[Gﬂh+Gx5] :.fm f” o KA (U 0)) 20~ (URT)Gpes(W
w @~ KIN-TUM + V()12 x &~ (RN Gabs20) gy dyp | (B4)
Xdry...drds;...dsy,. (B2) ) A )
with Ry:=={reR with U(r)=u} and  S,:={s
By applying the substitution eS with V(§)=v} being the surfaces of constant un-
winding of A; and.A,, respectively. The transition from the
(F1,F2, - F1,51,5, - - - ,Sm) second to the third line is performed simply by applying the

definition of the absorption free energy from Eg0).
R ) By applying exactly the same transformation as above
—u=U(r),ry, ...r,v=V(s),S, ... Sy, (B3 [Eqg. (B3)], we see that the same computation also holds for

J. J’ U(F)e~ WRDIGL+ G g= M -IUO+VON Gy | dr ds, .. .ds,
reRJses

= ... = fw Joc ue7K[)\7(U+U]267(1/RT)Gabs,l(u)e7(1/RT)Gab32(U)du dv. (85)

—o0

From Egs.(B4) and (B5) we receive finally the conditional absorption
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ﬁ f U(r)e” (WRDIGL+ oI g=xM-[UO+VON Gy dr ds, . ..ds,
reRJseS
@1(N):= R R . R
f f e~ (RDIG1(+Co(N g~ x M-IV gr,  dr, ds, .. .ds,
FER geS
foo foc ue KN = (Ur0)1%g= (RN Gaps1(w) g~ (VRN Gansav) 4y dy
_ (B6)

f - J o k- (U 0) P (URTCapsi(Wg— (VR Cansolo) gy

A completely symmetrical expression for @olds. In the case of a discrete state space modeling, the same arguments hold
with the only exception being that the integrations are replaced by summations and the functional determina(B& Eq.

vanishes from expressions that follow. The generalization taonthbsorber casgEgs.(35),(36)] is also straightforward and

goes in an analogous way.
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